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Abstract. The stochastic dynamics to reach the hot attractor of an explosive extended system
is analytically studied by using a previously reported schefifee stochastic path perturbation
approach(Caceres M O, Budel C E and Siboa G J 1995]. Phys. A: Math. Ger28 3877). A
perturbation theory in the small noise parameter is introduced to analyse the random escape of the
stochastic field from criticality. The anomalous fluctuations of the order parameter (the temperature
profile) are calculated analytically using an instanton-like approximation. Emphasis is placed on
a thermal non-homogeneous explosion in order to exemplify a system undergoing hysteresis in a
first-order non-equilibrium phase transition. Concerning the stochastic propagation of the flame
front we have carried out Monte Carlo simulations showing good agreement with our theoretical
predictions.

1. Introduction

In order to investigate the existence of new physical solutions which emerge beyond the
threshold of instability, nonlinear contributions—coming from the full equations of motion—
must be taken into account [1]. As a matter of fact, all dynamical systems undergoing a
bifurcation, can be described inreducedsubspace, the so-calleéntre manifoled-to some
dominant order—in the vicinity of the bifurcation by m®rmal form[2]. Among the several
universalnormal forms that can occur in nature, those breaking the reflection symmetry—in
their associated potentials—are frequently encountered when two fixed points coalesce for a
given value of the control parameter. This situation is typically what happens at the limit point
in a hysteresis cycle.

In previous papers we were particularly interestelihmit point bifurcations because in a
well stirred chemical reactor, the Semenov model [1] reduces—in its centre manifold—to that
class ofuniversalnormal form [3, 4]. A thermal explosion in a closed vessel in the limit of
high activation energy [5], is an excellent example of a physicochemical system dealing with
a process involving two timescales: a slow induction period followed by a slow saturation
characteristic of the final approach toward #tableattractor. In the context of homogeneous
thermochemical explosive systems, the order parameter is the temperature and the matching
time between these two slow regimes is around rdredom ignition time [5-7]; similar
situations can also occur in the analysis of rockets [8], and in reaction—diffusion processes [9].

Thenormal formanalysis for explosive systems has also been made, in the past, and from
different points of view: (a.1) in a deterministic approach (ignoring reactant consumption) for
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non-homogenous reactor tanks [10]; (a.2) for well stirred chemical reactors (homogeneous
systems) [3]; (b) from a stochastic point of view and considering the coupling between the
concentration and the thermal variable, in the homogenous [11] and in the non-homogeneous
case [12]. In the latter, it has been shown that the coupling of these two-order parameters leads
to the possibility of a transition towards a multiple steady state regime (cusp bifurcation).
In particular, for the inhomogeneous case it has been proved that ‘adiabatic elimination’
reduces the problem to a ‘critical’ field characterized by a Landau—Ginzburg potential [12].
Nevertheless, Tirapegui and van den Broeck have emphasized that this ‘reduction’ is non-
trivial and depends strongly on the dimensionality of the problem. The significance of the
stochastic nature of the ignition process was first pointed out by Baed§5], and since then
several works have been done in that field. In particular, for the homogeneous case, we have
pointed out that the timescale characterizing the escape from the instabilitylifetinee of

the unstable state calculated as the mean first-passage time (MFPT) [4]. Using the stochastic
path perturbation approach (SPPA), we have been able to develop a perturbation theory to
calculate—analytically—the first-passage time distribution (FPTD) [13, 14]. One of the goals
of this paper is to generalize that theory to spatially distributed systems. In particular, we will
apply the SPPA to the analysis of the stochastic ignition in a non-homogeneous reactor.

Related theoretical studies—on the analysis of the stochastic ignition problem—for
distributed systems without consumption, have also been done from the point of view of
the Kramer—Langer thermal activation time [15]. We emphasize that Fedotov’s approach
is related to a generalized Kramer’s activation from a given—extended—metastable state
over a saddle point. This is not the purpose of our paper; here we study the lifetime from
the critical unstable—extended—state, and we characterize its dynamics toward the stable
extended attractor. Thus we assume that the system is started in a range of initial conditions and
parameter values close to the limit-point bifurcation, i.e. at criticality. Therefore and because
the only attractor available (the hot temperature profile) is far from the initial condition, a
sudden jump will occur removing the system from criticality. Interestingly the SPPA gives us
the possibility to study this evoluticanalytically, and then the anomalous fluctuations will be
characterized and compared with Monte Carlo simulations.

In order to make the paper self-contained we have organized it in the following way. In
section 2 we calculate theormal form—near the critical point—starting from the Frank—
Kamenetskii thermochemical equatidghd€ equation of motiofor our single-order parameter:
the temperature profile), to model a non-homogeneous reactor without consumption. In
section 3 we develop—up to the dominant order in the small noise parameter—the SPPA
for extended systenier a saddle-node normal form. This SPPA allows us to calculate, in
the small noise approximation, the FPTD for each relevant Fourier mode of the critical field,
i.e. the lifetime of the unstable Fourier components. The transient fluctuations of the critical
field are also studied introducing an instanton-like approximation. In section 4 we present a
general discussion and the conclusions concerning our future research program. Some detailed
calculations of the steady state analysis of the Frank—Kamenetskii model are in appendix A.
Appendix B is concerned with the FPTD involved in the characterization of the homogeneous
mode. Appendix C deals with the analysis of space-averages, and finally appendix D with the
Monte Carlo simulations.
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2. The normal form analysis

2.1. Frank—Kamenetskii model for a thermochemical explosion

The Frank—Kamenetskii model results from considering a non-homogeneous chemical reactor,
in mechanical equilibrium, closed to mass transfer but capable of exchanging energy with a
thermal reservoir at constant temperatfiye The chemical transformation taking place within

the reactor is an irreversible process, which is assumed—in its simplest description—by a

unimolecular exothermic decompositidioel+ oxygeni oxidetheat where the rate constant
k = k(T) is an increasing function of the temperature [8]. If for simplicity one assumes that
the concentration of the reactant varies on a scale that is much slower than heat transfer, this
concentration can be taken as a constgnthus the relevant variable is the temperature profile
T. From the energy balance, the temperature prafig, 7) fulfils the dynamical equation [1]
(in one dimensiont)

d, . 2 .

ocy,—=T(xX,t) = Qcok(T) +k—=T (X, 1) (2.1)
ot 0x2

wherex is the thermic conductivity of the reactant,is the mass density of the mixture,

the specific heat at constant volung@ the heat of reaction, anid7) gives the temperature
dependence of the velocity of reaction. This is the Frank—Kamenetskii equation which gives
rise to a propagating flame front. If the reactor is well stirred, the diffusion term is replaced by
a Newton'’s cooling law and the balance equation turns out to be the Semenov model, which
we have studied before in the stochastic context [4,13]. Equation (2.1) must be solved under
the boundary condition® (&L, 7) = T, (2L is the length of the one-dimensional reactor),
whereT, is the temperature of the reservoir. Introducing the adimensional transformations

(T -T)U . Ko -
:T p:X/L T:GC th (22)

whereR is the gas constant aiidis an activation energy (for example, if we use the Arrhenius
rate model we havie(T) = koe~V/RT), it is possible to rewrite (2.1) in a simpler form in terms
of the adimensional temperature profile, )

d 32
—0=—0+68f(0) —1<p<i (2.3)
ot 0p?
Thus the boundary conditions are nét1, t) = 0. In (2.3) f(#) is an arbitrary function
representing the adimensional law for the rate constddt), i.e. f(6) = €& for the

exponential modelf (6) = exp[p/(1 + E6)] for the Arrhenius model (wher€ = RT,/U),
f(0) = p +q0 + ro? for the quadratic approximation, etc. In (28)s the adimensional
Kamenetskii control parameter

exp(—=U/RT,)
<R

From (2.3) and a typicaf (9) it is possible to see that depending on the Kamenetskii
parametes there will coexisnon-homogeneoustable and unstable stationary solutions. In
particular there exists a critical value of the control paraméter,§., where the phase space
has a limit point. Thus the value of the control paramétkyads to a bifurcation scenario in
the phase space of the stationary figjd o). In order to clarify this issue we have analysed the
stationary solutions of (2.3) for the particular case whiéf) is approximated by piecewise

8 = QU L%koco (2.4)

t In the general case the additional teﬁmf—x T(%,1), j = 0,1, 2 for the infinite slab, infinite cylinder and sphere
respectively, should be considered. Hence in this paper we only copsid@which leads to a simpler analysis.
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linear function £ (9), see appendix A. We note that the results of our paper are not based on any
approximation concerning the nonlinear functif@). The stochastic evolution of the flame
front will be studied on the basis of the normal form analysis, which of course is universal in
the sense that its form is independent of the detailed structure of the underlying fii6del

The structure of the functioi(6) only enters through renormalized coefficients inrloemal

form near the critical pointo,, §.).

2.2. The normal form near the critical point

In order to obtain the relevant dynamics in the neighbourhood of the g@int.), we now
introduce a multiple-scale transformation around this critical point (for a detailed analysis of
the coalescence of the two stationary branches at the §akee appendix A)

i - i +k1/4i i s kl/zi
ap ax ax1 ot ot
wherex = §/5. — 1 > 0 measures the departure from the critical valuerhus, assuming an

expansion in for the temperature profile
0 =00+ A0L+A0p + - (2.6)

where each term fulfils the boundary conditiofig+1,7) = 0,Vj = 0,1,2,..., and
introducing an amplitude in the form

6 = Oc(x) 61 = ¢(X1, t)uo(x) etc (27)

we obtain an equation which can be analysed in increasing order in powers-odm (2.7)

we see thay(x) is a stationary solution, artd (x, x3, ) has been written as the product of an
unknown profilexo(x) times the amplitude depending on the slow variableswhich grow

in the slow time variable. We remark that the present analysis is independent of the detailed
structure off (9). Using (2.5)—(2.7) in (2.3) we obtain

9 9 9 92 92 92
ﬁ[—@o+ﬁ591+k—ﬁz+-u] = —0+Vi

(2.5)

O+t A—Or -
3t a1 Ix2 ax2 * Mox2?

92 92 92
+\/X[—290+\/X—291+x—292} +o
axl 8x1 Bxl
+8.(L+ M) fo+ (VA0 + 00 + ) + 1 007 + 1,610,032 + O(1F)]  (2.8)

where we have used the notation

8}’!
In= (89" f)@:@ . (9)

Collecting terms of the same orderjirwe get forO(1°)
2

o+ befo =0 (2.10)
For O(+/2) we obtain

d 32 32

5,0= ﬁel + Eeo + 6. f161.
Nevertheless, using that

d 92

—60p= —56=0 211
%= 5,2 (211)
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and that, = ¢ (x1, Hug(x), we find thatug(x) is given by the solution of
2

——Uo = —d fiuo. (2.12)
dx?

Finally, for O()) we get
9 92 92 1202
—01 = —O+ —01+8. | il + =2+ fo ). 2.13
5 = a2t 2™ (fl 2% =5 fo) (2.13)

The solution of (2.10) is the stationary profile at the critical vaiiie The solution of
(2.12) with the boundary conditiomy(+1) = 0 is the so called Kordylewski profile, which
exists by virtue of the definition of criticality [16]. Multiplying (2.13) by (x) and integrating
over the domairD = [—1, 1], and due to the fact that

82
/ ug | —=02+4. f162 dx =0 (214)
D 8x2

we get that the amplitude (x1, #) satisfies a closed equation. Thus, going back to the old
dimensional variablegt, 7) (see (2.1)) the evolution of the amplitugdds governed by

d y 32 3 8
a_f"b(i’ = Dﬁq‘)(i, H+ap(E,D>+b D>0 a>0 b>0 (2.15)
X
wherex € [-L, L] and
D— ¥ _ k8L [ fouddx b k8% [ fouo dx. (2.16)
ocy 20c¢,L? I uf dx oc,L? I ug dx

In what follows we will investigate the stochastic version of the amplitude equation (2.15).

The amplitude equation (2.15) represents the growth at criticality, this is so because if
A # 0butsmall, the time-dependent profile (the flame front) is characterized by the contribution
~/ 201 = /Apuy. Therefore the following question arises: due to the fact that fluctuations
are always present in an explosive system (but they were not taken into account in the balance
equation (2.1)) one may wonder what would be thy@amicsof a stochastic flame front
appearing at criticality? As a matter of fact, in the context of a zero-dimensional stochastic
perturbation theory—in the small noise parameter—we have been able to characterize the
lifetime (i.e. the MFPT) of the (homogeneous) unstable state that appears in the normal form
associated with the Semenov model [4]. In [13] we have shown by using the SPPA that it is
possible to obtain an analytical expression of the FPTD, which is useful to study the random
explosive times in a well stirred reactor (see also [14] for the marginalicas@). Here we
propose to generalize the SPPA for an extended system when its normal form at criticality is
characterized by (2.15). Therefore in the next section we shall incorporate an additive noise
& (%, 1) in this normal form in order to consider random fluctuations in the amplitude equation.

3. Stochastic path perturbation approach for extended systems

In a zero-dimensional system we have shown that the SPPA is a powerful technique for
calculating—analytically—the FPTD for different normal forms [13,14,17]. In appendix B
we summarize these results for a particular non-symmetric potential normal form, i.e. we
characterize théfetime of the unstable stat& = 0 from the stochastic differential equation
X = aX?+b+,/e&(t) ,witha > 0,b > 0, and wheré () is a zero-mean Gaussian white-noise
process.

Here we extend that approach to spatially distributed systems characterized by a limit
point bifurcation. Therefore, let us study the univeisadldle-nodeormal form (stochastic
normal form)

Fp(%, 1) = DO2p (X, 1) +ap (X, )2+ b+ Je&(X, 1) fe[-L,L] (3.1)
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whereD is the diffusion constant; > 0,5 > 0, ¢ is the small-noise intensity arfdx, 7) is a
zero-mean Gaussian stochastic field characterized by the white correlation
(EGE, DER, ) =8(X = X)8(F —1). (3.2)

It has been pointed out, in view of the nonlinear and violent character of a chemical
explosion that the effect of fluctuations should be taken into account; in a mesoscopic
description the starting point to work out these fluctuations is a full master equation [5].
But in a more phenomenological way it can be shown that an augmented Semenov equation
incorporating the effect of fluctuations has a Langevin-like structure [6] (additive noise). Hence
our amplitude equation (3.1) can be considered in that framework [4]. In what follows we will
study the lifetime of the free stochastic figidx, ) from the unstable state = 0 characterized
by the evolution equation (3.1).

3.1. Fourier analysis of the escape processes

In order to study the stochastic dynamics (3.1) of the amplithide 7), it is important to
analyse the stochastic escape processes (lifetime) of each Fourier mode. This can be done by
generalizing the SPPA [13, 14] to extended systems. Here we are going to use this generalized
SPPA to solve the problem of an extended explosive system, but this approach can also be
applied to other systems.

Remark 1. At criticality, the relaxation process t6,,,(x) (the hot attractor of (2.3)) is
triggered by the fluctuations; and tldominantequation under consideration is then (3.1),
which in Fourier space reads

. [ee) k 2
dr=a Z GnPr—n + Do — (%) Dy + /& k=0,%1,£2,... (3-3)

n=—00

where the correlation (3.2) in Fourier representation reads
(Er(DE; () = 8k ;8 = 1'). (3.4)

Remark 2. The lifetime from the neighbourhood of the unstable statér,7) = O is
characterized by the FPTD for each Fourier magle to reach a macroscopic valug > /e.
These probability distributions can be obtained (analytically) by analysing the different stages
of evolution of each Fourier modg . We will show that it is possible to separate several stages
of evolution, from which the dynamics@fx, 7) toward the attracto®,,, () can be inferred.

Basically the idea is to decompose the mggie) into two parts, a proced%,(¢) associated
with the very early stage of evolution and a proc&ss), which takes into account the nonlinear
terms of the dynamical equation. Up to this point the iterative scheme is similar (but not equal)
to the zero-dimensional case [13]. Therefore the lifetime of the unstable homogeneous state
is characterized by the escape of the mggewhich can be studied in terms of the FPTD.
The role of the non-homogeneous modes in the whole escape process will be discussed, in a
similar way, in section 3.2. From now on we use the simpler notasjgn instead ofg; (7),
etc.

In order to proceed with this programme, and inspired by the previous experience [13],
we now introduce the nonlinear transformatiohk(= 0, +1, +2,...)

_ H @)
(1) = 0

t The free fields¢(x,7) and £(x,7) are expanded in Fourier modes using to the notatiofp(x,7) =
Y i () explikwx/L) andé (X, 1) = Y & (7) explikmx /L), for periodic boundary condition ohe [—L, L].

(3.5)
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and according to the initial conditiaf(x, 0) = 0 we use the Fourier initial conditiornsk

H,(0) =0 Y. (0) = 1. (3.6)
Using the transformation (3.5) in (3.3) we get

Hk Hy - e H, Hi_, 2Hk

— - =Y = — —bboy — D(k/L)"— + . 3.7

AT r=a 2, T 0.k (k/L) Y, Ve& (3.7)

The SPPA consists of choosing a suitable nonlinear transformationt, such that from (3.7)
two set of coupled equations can be found in order to be able to solve—in an iterative way—the
evolution of theinitial stage in a small-noise approximation.

3.1.1. Modé = 0. From (3.7) itis possible to write the following equivalent set of coupled
equations:

. > H, H_,
Hoz[b+ﬁ§0+a }Yo

== 3.8
Y, 7 (3.8)

n=—00(n#0)
Yo = —aHo. (39)

Note that if we can show that any terﬁ’-} ’;:", vV n # 0is of O(¢), the iterative procedure

up toO(/¢) (if b # 0) will be analogous to the zero-dimensional case [13], i.e., the statistic
of the escape time of the homogeneous mode is governed by the statistic of the root of the
random equatiop(z,) = O.

3.1.2. Modes witlk # 0. From (3.7) we can write, for the non-homogeneous modes, the
following equivalent set of coupled equations:

e Hn Hk—n
Yn kan

H = [a + \/ggk} Y (3.10)

n=—o0(n#k,0)
Y = [—2a¢o + D(k /L)%Yy (3.11)
Vk # 0. Therefore, from (3.11) and using (3.6) we write
t
Yi(t) = expf (—Za(f)o(t/) +ay) dt’ (312)
0

where we define;, = D(k/L)?. Approximating, at short timeg(r) ~ 1 in the evolution
equation forH; we get

Hy(t) ~ /O [a 3 ¢n(r’>¢k_n<ﬂ)+¢Esk<r’)}dr’. (3.13)

n=—o00(n#k,0)
Considering thad, (r) = Hy(t)/ Y (t) the small-noise iterative dominant contribution gives

P (1) = [VeWi(t) + O(e)] exp /O (+2a¢o(t') — ay)dt’ (3.14)
whereW; (¢) is the Wiener process:

Wi (t) = L %‘k([,)dl/ Wi (0) = 0. (315)

t Note that for a different normal form the non-trivial transformaiggiir) = Hy ()% /Yx (r)? could have different
exponents, 8, see, for example, [17,19].
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From (3.14) we see that () will be bounded if¢o(z) is of theO(,/¢). Hence at the initial
stage we can take

o1 (t) =~ O(J/¢) Vk # 0. (3.16)
A better approximation will be given using (3.23), see section 3.2. The important point is
that this approximation is enough to study, in a self-consistent way, the evolution of the initial
stage of the homogeneous mode; i.e., using (3.16) in (3.8) we see that the dominant order,
O(/¢), in the evolution ofpy(¢) is the same as for the zero-dimensional case [13}. 4 0
(marginal case) the role of the non-homogeneous modes is more important, this is so because
in this case the iterative procedure must be performed up(t9 in order to improve the
passage time statistics [14]. However, in the marginal case we expect that neglecting the term
aYod L o) 1;'—% in (3.8) could lead to some discrepancy with the simulations. We
show, in what follows, that this crude approximation reproduces quite well the Monte Carlo
simulations, even for the marginal case, see section 3.3.

3.1.3. The stochastic pathsin the initial state the set of equations (3.8) and (3.9) can be solved
iteratively inO(/¢); higher corrections must be taken in the marginal caset, see appendix B.
We remark that in the SPPA only the evolution of thiial state is necessary to be able to
calculate the random escape times. Then the stochasticfagth€an be written in the form

bt + /e Wo(t)
1— Zabt? — a\/eQo(t)
whereWy(t) is a Wiener process, i.e.
t
Wo(1) = / Eo(¢Hdr’ Wo(0) =0 (3.18)
0

and the Gaussian proceRs(z) is defined by

$o(1) ~ (3.17)

Qo(1) =/ Wo(t)dr'. (3.19)
0

Scaling-out Wiener integralsWo(t) = tY?Wy and Qo(t) = t¥?Qo where Wy and Qg

are Gaussian random variables, the escape of the stochasticggéths= oo (3.17) is

characterized by the random algebraic equation ;.abtez — aﬁtf/zﬂo = 0. Hence the

lifetime of the unstable homogeneous state is characterized by the escape of thegmnode

which is given in equation (B2) in terms of the FPTHIz, ), see appendix B for the details.
Now let us deal with thé = 0 Fourier numbers, these modes can also be studied iteratively.

First integrateyy (¢), from (3.11), then

Yi(t) <1, ~ €Xploxt] Vi <t (3.20)
Yi(0) =1, = Yi(te)i<i, €XPllax — 2aE)(t — 1.)] vt > 1, (3.21)

where& ~ O(1) is of the order of thenighesttemperature in the reactor (i.€,is of the

order of maximum temperature in tht profile 6,,,(%¥): see appendix A for a piecewise
linear example). To get this expression we have used the instanton-like approximation for the
temporal behaviour afg (), i.e.¢o(t) = Eu(t —1t.). Heret, is the random time characterizing

the escape of the homogeneous mode (B2) ((B9) for the marginabcas@) andu(t — ¢,)

is the Heaviside function. In order to approximate the procegg€s we first integrate to
O(4/¢) using that at short timeg,(+ ~ 0) ~ 1 andH, (+ ~ 0) ~ 0; then

H (1) = e Wi (1) (3.22)

T If b = 0, from (3.8) we approximate the paths to the dominant ofe, but in this case the influence of the
non-homogeneous modes is of the same order.
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where the Wiener process#é (r) are statistically independent &f, (z) for k £ k’. Now, to
improve these solutions we iteratg () again using (3.20) and (3.22), then we getf4irt)
the improved solution (fok £ 0)

! = W ([,) Wi—n (t,)
H(t) ~ | dt' Y (' E _— 1 3.23
Ko /0 i )|:n=oo(n,kn#0)a8 Y (') Yi—n (') * ﬁék(t )i| ( )

Remembering that (1) = 742, itis possible to see the complicated coupling between the
different Fourier modes. Nevertheless, from the expression (3.20) and (3.23) it is simple to see
that the growth of the modefs (for k£ £ 0) is subordinated to the escape of the homogeneous
mode¢o. An important result that can also be inferred from this approximation is that only

Fourier modes fulfilling the ‘deterministic’ selection rule
ox = Dk /L)? < 2a€ (3.24)

will grow exponentially after the random time This condition connects the exploding Fourier
indicesk € [£1, £2. .., £k*] with the deterministicoparameters of the system which appear

in the bound index* ~ integer[f 2“75] i.e., the diffusion coefficienD, the nonlinear

parameter, the size of the one-dimensional reactor (lenfjjhand the highest temperature
& of the profiledy,, (X).

Note that the ‘escape’ of the non-homogeneous mpde) has its dominant random
character through the proceEg(r), which (in its first iteration) is random by virtue of the
random time, of the homogeneous modg(¢). The distribution of these times takes into
account only the universal parametér= f—; which measure the departure from the marginal
caseb = 0 (delaying the explosion), and the deterministic time 7 /1/(4ab) (if b = O the
FPTD P(z,) only depends on the universal parametefe, see appendix B). Another result
that can also be seen from our SPPA is that the smaller the Fourier néntherfaster its
exponential growth

We emphasize that our* characterizes a maximal ‘effective’ Fourier index, i.e., the
maximal Fourier mode, () which will grow exponentially up to the macroscopic important
valueé, at random times. This is a result which can numerically be tested from (3.3). It should
be pointed out that our estimation of this Fourier index is an approximation. Unfortunately
we do not know the exact deterministic £ 0) solution of (3.3), hence we cannot introduce
a renormalization procedure to improve our predictiorkaf Note that a renormalization
procedure was possible in the zero-dimensional case because the exact deterministic solution
is known [13]. Figure 1 shows realizations ¢f(¢) for several values of(= 0, 1, 2, 3, 4),
showing the occurrence of an effective maximal Fourier index, which in fact is well estimated
by our approximation. This figure shows that the important exploding modes are iy faxt
d1(1), ¢2(t). Nevertheless modess(r), and ¢4(z) can also be seen to explode, but their
respective amplitudes are much smaller and they are not important in the calculation of the
space fluctuations of the flame front. Fbr= 5,a = 5, = 439, L = 1 and using the
selection rule (3.24) the predicted maximal Fourier index ghfes integer[298]. In several
simulations (we run 1DFourier modes) we could not see to explode beyonaiiie mode.

3.2. Passage times for the Fourier modgs

In a similar way to how we characterized fifetimeof the unstable homogeneous sigge= 0

(i.e. the FPTDP(z,), see appendix B), the SPPA gives also the possibility to characterize the
lifetime of each mode, by calculating the joint probability distributioRl (z;; ¢.). We will

show that both random times are correlated, and the FPTD of the ghodegiven by the
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Figure 1. Realizations ofy, (¢) for several values of = (0, 1, 2, 3, 4) as function of timer

for the universal parametgt = 200, deterministic time = 2.22, length scald. = 1, and
diffusion coefficientD = 5. The macroscopic highest temperature used to coumtsttepef the
homogeneous mode wds = 43.9. The selection rule predicts an effectie~ 3. The Monte
Carlo simulations were performed using¥@alizations and show the Fourier modes exploding at
random times, after which their temporal behaviour is kept to their respective macroscopic values
&. Inset @) shows that the fluctuations are®fs1/2); nevertheless, note that for this early interval
oftimego(t) shows much higher bounded fluctuations. Inbsbiows the realizations (¢), ¢2 (1),

¢3(1), and alsap4(¢) for a small time interval before the huge explosion of the homogeneous mode.
Inset €) shows a small time interval just after the explosionpg{t); therein the realization of
¢4(t) can be seen to fluctuate but finally its explodes to a tiny val(&).

marginal distribution
o0
IT(%) =/ II(; t.) dt, for Vke[+1, £2---, £k*].
0

Of course, the FPTD of the mogg is P(z.) = f0°° I1(t; t,) dt.
Let us fix a value of the random timig then from (3.20) and (3.23) the stochastic paths
of the Fourier mode, can be approximated by the dominant contribution

or(t) >~ i[ﬁ/ Y& () dt' + O(s)] k=+1+£2 .... (3.25)
Y(@) 0

From this expression we see immediately that & ¢, the stochastic processeg(t) are
bounded, i.e. their variances are not increasing functions of ifsenall fluctuationg)(e)
can be seen taking the space average, see appendix C). Nevertheless, &ndo; < 2a€
the stochastic procegg () grows exponentially in time, in particular its variance diverges for
t — 00.

Therefore let us focus on the stochastic proggss for ¢ > ¢, and for any fulfilling the
selection rule (3.24). From (3.25) and using the expressiokig(of, it follows (up toO (/%))
that we can approximate

B (Drmr, =~ YL;)[ / Y ()E) d + / Ye(t)E () df} Vk € [+1, +2. .., +k*].
k 0 1,
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(3.26)

From this expression it is simple to see that the dominant term characterizing the growth of
the fluctuations, for timesof O(z,), comes from the first integral. Thus we can approximate
the growth of the Fourier modg, (in its initial stage of evolution) by the stochastic paths (for
kel[£l,£2..., £k*])

JE

or(t) =~ —[/ Y& (1) dt’:| = Bexp2a& — ay)t t >t (3.27)
Ye@) L Jo

whereE = E(a, oy, &, t.) is a Gaussian random variable with mean value zero and variance
(B2 = zi[exp(—(zms — a1, — exp(—4agr,)]. (3.28)
ok

We note that owing to the fact that < 2a£ the dispersion (3.28) is bounded (in fact it is of
O(e)).

Remark 3. Equation (3.27) can be used to obtain the FPTD for any Fourier miogée 0
fulfilling the rule (3.24). The random escape tispean be inferred from the random quantity
i (1)? reaching a macroscopic threshafif > ¢; then we write€2 = E2 exp 22a& — oy )i,
which means

f log€?/ 82 (3.29)

= 22a€ —ap)

For ¢, > 0 this equation can be used as a transformation mapping from the Gaussian
random variable to the random variablg. Then applying the theorem of transformation we
obtain

-1
2(2a€ — )& £
Mt | t.) = (8(tx — t(E))) pz) = ( )€ |:erf( i ))]

27 (B2) 2(E2

_g2 _ _
8 exp( EF exp( 22(;2;;8 o)l

—(2a€ — Olk)lk> (3.30)

where all the non-trivial dependence on the random escape.tzomes from £2), see (3.28).
Here& ~ O(1) is of the order of the highest hot temperature and the thresliplde of the
order of the Fourier weights of the hot attractor profile (thus we cantake&, and, in general,
& (for all k) from its Fourier expansion (3.39)).

The marginal probability distributiobl (#;) (for k € [+1, £2..., £k*]) is found from
the integral

H(tk) = foo dte H(tk | te)P(te) (331)
0

whereP(z,) can be read from appendix B. Note that here we have used the ndi&tiohs,)
to emphasize the character of conditional FPTD. The strong correlation betywaed?,
is evident because the joint probability distributidi(z; 7,) = T1(# | t.)P(t.) cannot be
factorized.

Equation (3.29) shows an analogy with the Susuki scaling transformation appearing in the
decay from an unstable homogeneous state [18]. In fact, considering the FPTD from a random
variable transformation as in (3.29), and using the instanton approximation, it has been shown
that Susuki’s anomalous fluctuation may also be studied in the context of the SPPA [19]. This
fact will be clarified and generalized to extended systems in the next sections.
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3.2.1. Moments of the random escape time The integral (3.31) must be solved numerically

due to the complicated structure of the functiBry,), see (B2), and ( B9) for the marginal

case. Nevertheless, one can introduce another method to get an analytical estimation of the
MFPT: 7; = f0°° . I1(#,)dr,.. This can be seen by considering the generating function

G(w) = (eXp(—oty)). (3.32)

From (3.29) the functiom, = 7, (E) can be used; then the calculation of the conditional
generating function is straightforward:

1 —&?
G(wlt):/—ex <—T—a)t (E)) de
‘ /27 (E2) PU2(@3) — "
Mo — +1 =2\ \ 2 P
L s v (AN (o (339)
7 &2

wherel (z) is the Gamma function, and the variaf@?) is characterized by the random escape
timez, see ( 3.28). All the conditional momenig'),, can be calculated by differentiation of
G(w | t.). In particular, the MFPT is the first moment

1

t ——d[G te)]w=0 =
(k)ze— @ (wlt, w=0—m

E2ay 1
X {Iog <kT> — log[exp(—2(2a€ — ay)t.) — exp(—4alt,)] — ¥ <§> }

(3.34)

Wherexp(%) is the Digamma function. The expression fqr),, should be averaged over the
distribution of the random escape timgbut this is difficult to do analytically, so we need to
introduce a new approximation.

Because we are only interested in Fourier modes fulfilling selection rule (3.24), it is
possible to approximate (for large valuesspfout smaller than 28) exp(—2(2a€ — oy)t,) —
exp(—4alt,) ~ exp(—2(2a€ — ay)t,) in (3.34), and then we obtain a simpler expressipn,
which can now easily be averaged ova,)

00 1
= [ P b ¢
(‘:kZOlk
x{log[ —*— | +y +In4 for 2a4(t,) > 1. (3.35)
&

Here y = 0577216 is the Euler constant. This approximation is valid for k* =

integer[g\/%] and gives an estimation of the largest timescale of the exploding Fourier
mode. From (3.35) we see that the escape time of this non-homogeneous mode resembles
Susuki’s law. Nevertheless, in addition to the teﬂﬂog(%) we have here a fine structure
depending on the Fourier number and threslld Of course, this formula shows that the
MFPT 7, for each Fourier mode is larger than the homogeneous IV(FKI?Iﬁecausé% >1,
as was expected.

Another interesting case is the limit of smajl values; in this case (3.34) can also be
analytically studied. Rewriting (3.34) the MFEIT can be put in the form

1 oo
e

2
X [Iog <%"> — Y <%> +logoy + 4alt, — log(exployxt.) — 1)] dz,. (3.36)
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Then for a fixed time, and in the limit 2,7, <« 1 (small Fourier numbers) we get

1 &
(tk),d%te+ﬁ log| = )+y+In2—logz |. (3.37)
&

We see, from (3.37), thdt), can be advanced relative to the case of large Fourier numbers
k ~ k*. The interesting point is to know the delayed tim&:— (z.) as a function of the
geometry (selection rule (3.24)) and the physical parameters of the system.

We emphasize that (3.35) and (3.37) are approximations which can, in principle, be
improved by using (3.36). Therefore a crude approximation of the FPTD for the different
Fourier random timesg could be taken as

1 Ezak
) ~ Pt + log =~ 3.38
0~ P (1 5z —osloa i) (339
P () being the FPTD of the homogeneous mode.

In general, the conditional generating functiGiw | 7,) and the distributiorP (z,) make
it possible to calculate any momentpf

3.3. Transient fluctuations of the flame front

The saddle-nodanormal form (3.1) describes the ignition; i.e., the dynamics from criticality
toward thehotattractom,,, (x). Itis therefore important to have somealyticalapproximation
for this time evolution, and, in particular, to study its space fluctuations in order to characterize
the random explosion of a flame front.

A quantity which is representative of these fluctuations is the so-called anomalous
fluctuation, which typically appears in any nonequilibrium phase transition [18]. In order
to do this we first represent the hot attraaigy, (x) by Fourier cosine analysis, then

o &
O = > & cos<£> xe[—L,L] (3.39)
k=0,12,... L
where the constani§ can be obtained easily. Therefore the dynamicg @Gf, 7) (from the
unstable stat¢ = 0) can be approximated by the instanton-like stochastic field (neglecting
the initial O(/¢) space fluctuation aroungl= 0)

o, 1) =ulf —t.)E + Z u(t — )& cos(kn—x> . (3.40)
k=1,2,... L

This approximation describes quite well all the transient fluctuations, but also discards the final

fluctuationgD(/¢) around the hot attractor. In (3.40) the random nature of the evolution profile

is taken into account by the random character oftbeapdimesz, andr;. In appendix B we

have given the analytical expression for the FPA@,); the non-homogeneous modés#£ 0)

are characterized by the FPTIX#,), see section 3.2, equation (3.31) or approximation (3.38).

Therefore, expression (3.40) allows us to explore the transient spatial fluctuations of the flame

front. In particular, the anomalous fluctuations can be characterized by the function

- 1 - -
op(f) = D—/D {p(F,D)?) — (¢(F,1))?) d¥

1 kmx k'mx - -
- —/ [ Z Z cos<ﬂ> cos( nx)é‘kf,‘k/(u(t —tu(@ — tp))
Dy Jo, k=0,1,2,... k'=0,1,2,... L L

- 2
-y (cos(%)&) (u(f—tk))2:|di. (3.41)

k=0,1,2,...
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Figure 2. Anomalous fluctuations, (1) as function of timer for several values of the noise
parametee. (a) K = 200 andr = 2.22; (b) K = 20.22 andr = 2.22; and ¢) for the marginal
caseh = 0 withae/2 = 1. Monte Carlo simulations (dots) were performed usingrélizations.

HereD, = [—L, L] and the notationg, = ¢., &, = £ are understood. Using the orthogonal
property of the Fourier basis, it follows that

k* i r 2
op) =Y 53“0 n(;k)dtk—<fo H(tk)dtk>:|. (3.42)

k=0,1,2,...
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Figure 2. (Continued)

Here we have used the notatibi(zp) = P(z,). Note thatk* takes into account the selection
rule (3.24) of the Fourier modes that ‘effectively’ grow in accord with the parameters of the
system:D, a, L, &.

Equation (3.42) is a closed expression given in terms of the FPTD which characterizes the
explosions of each Fourier mode. In figurea)2(c) the functioro, () has been compared with
Monte Carlo simulations, showing thereby a good agreement with our theoretical predictions
(see appendix D for the numerical details). If the system is far from the marginal case

this function shows a narrow distribution near the deterministic ime n\/%, but this
is not the case whel¥ « 1. In themarginal situation the FPTDP(z,) has a long tail
~1~52; hence predicting a large dispersion. Note that for this case our paths (B6) are just
the simplest approximation (neglecting some renormalization t@tlag), which is why our
theoretical prediction does not show a very good agreement with the Monte Carlo simulations
of figure 2¢).

Formula (3.42) provides a good approach for characterizing the random ignition time
of an extended system. Note that whatever the physical parameters are, our SPPA gives a
good description (in the small-noise limit) of the space fluctuations. The marginal situation
corresponds to the case when— 0 (and this, of course, depends on the geometry and the
thermochemical parameters, see (2.16)); in this &g is given by (B9) which is only an
approximation of the escape of the homogeneous mode, see appendix B. The influence of the
escape of the non-homogeneous Fourier modes, is taken into account in our approach—in a
non-trivial way—through the formula fdr ().
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4. Conclusions

We have presented a stochastic perturbation theory—in the small-noise parameter—which
allows us to study the anomalous fluctuations for extended systems near the critical point. The
physical system was assumed to be at criticality, thereby the dynamics was represented by an
universal normal form. In particular—in this paper—we have been concerned with a normal
form having a limit point. This type of universalolution equatiorappears when a system
shows hysteresis in afirst-order like nonequilibrium phase transition. This situation occurs, for
example, in explosive non-homogeneous thermochemical reactors. We have used a multiple-
scale transformation to obtain from the Frank—Kamenetskii unimolecular exothermic model
its corresponding normal form (2.15). Then, from the stochastic version of this amplitude
equation we have inferred, from criticality, the stochastic propagation of the flame front.

The present theoretical approach was carried out generalizing the stochastic path
perturbation approach for non-homogeneous problems. Thereby the first-passage time
distribution for each Fourier modH(t,) were characterized by analytical expressions. In
particular, the mean first-passage time, i.e. the timescale characterizitifgtinge of each
Fourier modeZ;, was found as a function of all the physical parameters of the problem (3.36).
Thus, using thigffectivetheoretical approach we have succeeded in characterizing the spatial
fluctuationso, (¢), and the random thermal ignition in non-homogenous physicochemical
reactors without consumption. The interesting situation including reactant consumption is
under investigation.

Let us finish with the quotation of a dark philosopher. ‘All things are part of one primary
substance, fire." (Heraclitus, 540-475 BC.)
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Appendix A. Stationary states of the Frank—Kamenetskii model

In order to clarify the type of non-homogeneous stationary solutions that may appear in (2.3),

let us introduce here iecewise lineaapproximation of the functiorf (9), i.e., considering

the Arrhenius reaction model, fgi(0) we can approximate it by the nonlinear function
fO)=Au@®—6,)+1 (A1)

whereu(6 — 6,) is the Heaviside function. Using this expression iazo%e +5f(@)itis

possible to see that there exist three stationary soludigngulfilling 6s,(+1) =0

Osi = Ocota if §<26.=3. (A2)
-1
. (A-12 1
Os; = O, if 6260, —+= =4 A3
St hot |:4(A _ %) 2 b ( )
Ost = Ounst if O <6 < 200 = 6. (A4)

Here thehot and theunstableprofilesé,,,, 0,,;; are even functions given by

AS A-1 )
A e AT D L A — Y 0<p < (p)
b ()= 1 - 2 o2z o2 "

unst )
51— )+ (pS(A = DA~ p) v o(pp<p<l

(A5)
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where
B(A — 1) \J8%(A — 12 - 45(A — 16— )
Py = I . (A6)
25(A—3)
Thecold profile is characterized by the (even) function
1)
Ocota(p) = _E('O - D(p+1 v pel0,1] (A7)

We see that the analogy with the homogeneous Semenov model is entirely similar
[4,13,14]. Due to the fact that the eingenvalue in the linear stability analysis of (2.3) is null
in O, it is not possible to perform a perturbation analysis in order to study—analytically—
which of the solutiongs, are asymptotically stable or unstable. Therefore, we have performed
a numerical study of these solutions in order to classify which of them were stable or not, thus
concluding thav,.,,;, andé,,, are the stable solutions, aig,,, is the unstable one. From
this analysis we see that fére [§;, é.] one finds two branches of coexisting stationary states
having opposite stability properties, in particular at the p&itttie unstable and the cold branch
collideat6. and subsequently they are annihilated; for this reason this point can be dafiéd a
point. We should remark that a similar conclusion can also be obtained for the more realistic
Arrhenius modelf (9), but the presentiecewise lineamodel allows us to get a simpler and
analytical description of the non-homogeneous bifurcation scenario. We remark that in all
the paper we will be interested in the temporal evolution offlame frontcoming from the
vicinity of the critical point ., 8.), i.e. its normal form and not on the detailed structure of

f).

Appendix B. Escape times for thep, Fourier mode

Here we summarize the results for the FPPR.), which can be obtained from the analysis
of the normal form associated to the (homogeneous) Semenov model. From the pole of
¢o(t,) = oo and scaling-out Wiener integrals (see (3.17)—(3.19)) the FPTD is [13]

aQ
P(t) = P(Q) |- (B1)
[3 313\/? 2\*| |de
P(te) = Zexp[—ég E (1— ﬁ) d_te (BZ)
where
(s[9] 1 /K\Y4 7\Y? \”?
@ =z (5) [(‘) +3(7) ®)

and the deterministic escape timés (in the SPPA, factof;—é comes from a remormalization
procedure [13])

T 2

=—./— B4
"=V w (B4)
and the constamt’ measures the departure from the marginal case
b3
K=—;. (B5)
ag

The small-noise approximation invoked to get (B2) can be measured with the universal
paramete > 1.
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The case wheth = 0 (marginal) has to be worked out in a second-order perturbation
theory in order to improve the statistics of the FPTD [14]. Nevertheless, the term
aYod X w0 ;’-% in (3.8) is of the same ordeP(s). So in order to be able to get a
closed iterative procedure we have to neglected this contribution from the non-homogeneous
modes. Onthe other hand, itis possible to see that this term will produce only a renormalization
of O(e); therefore we expect that our result (neglecting this term) will not be so wrong from
the simulations. In fact our figure @&(shows that the predicted statistics are quite good. It
is possible to understand heuristically why this term is important in the marginal case: this
is so because only whén= 0 thepotentialis so flat that the diffusion term turns out to be
crucial for the escape of the unstable state 0. Therefore, for the marginal case we go one
step further and introduce the approximation of neglecting the ﬂﬂz,ii_w(,1¢o> 1;’—%
in (3.8). Hence the escape process is now approximatéddpby the stochastic paths

VeWo(t)
1— a/eQ0(t) +a2eOq(t)
whereWy(r) andQq(r) are as before (see (3.18) and (3.19)). Here the non-Gaussian process
®o(?) is characterized by

Po(t) = (B6)

t
R L (B7)
0
where the stochastic procegst) is defined by
t
o) = [ 200) W), (B8)
0

In this case the proce®3(¢) scales liker3©, where®q is a non-Gaussian random variable
[14]. Then from the pole ofy(7,) = co and scaling-out all the integrals, see (B6)—(B8), the
FPTD for the marginal case reads [14]

332 -3
P(t,) = aToe exp<2028t63> C(t,) (B9)

whereC(t,) gives the second-order correction

o/ X/ 1 VT (20 + x) 1 -1
o= 2(p + x) eXp<<p+x>{ NED [l+erf(m>}+eXp<¢+x>}
and

<p=<p(t)=2a2me3 x=ﬂ)
¢ 3 -9

In[13, 14] we have shown the good agreement of (B2) and (B9) with Monte Carlo simulations.

Appendix C. Small fluctuations

Here we analyse thgpace-averagéuctuationsO(e) of the processeg, (t), for the Fourier
numbersk # O at earlier times < f,. In order to do this we note from the first stage
of evolution, up toO(/¢), that H,(t) ~ O(J/e)W,(r) and Y, (t) ~ O(1), i.e. Y, (¢) is
independent of the procesf (r). Using the fact that different Wiener proces3égr) are
statistically independent of each other, twplingselection modes appearing in (3.23), and
from the previously mentioned initial (first) stage of evolution, it follows that the average of
each Fourier mode, can be approximated by

Hi (1)
Y (1)

G(t)ir, = < > = V() T H (). (C1)
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On the other hand, it is simple to see, using (3.23), thatisfodd H,(r) = 0. Then for any
odd Fourier number it follows that the spatial average of the Fourier modes are null:

Gous1(D)ir, = 0. (C2)

Nevertheless, for even Fourier modes using (3.23), (C1) and the factthat')?) = ¢’ it is
possible to see that

-— 4ae expl—oxt] Qo 7 (O
= —-— —_— —_f — =+
dox ()<, ) [exp[ > t]( > t 1) 1} (C3)
showing, on the average, a small increasing behavio@(ef, which finally extinguishes for
larger.

Even when there could be small random fluctuations located any where in the domain
X € [-L, L], on average only even Fourier modes are non-zero. On the other hand, from the
FPTDTI(#) we know that the exponentigtowth of each Fourier modey (¢) can only occur
after the random escape timeand ifk € [£1, ..., +k*]. Interestingly, (C3) tells us that for
any evenk the averagey, (r) has a small increasing transietit(¢), for timest < 1,, i.e. the
signature of small fluctuations.

Appendix D. Monte Carlo simulations

Inorder to test our theoretical predictions we have carried out numerical simulations to calculate
the anomalous fluctuations, (7) of the stochastic field(x, 7). Note that our analytical
expression (3.42) is given in terms of all the physical parameters of the system and in addition
interms of the set of numbef§, }, which are none other than the Fourier weights characterizing
the hot attractoé,,,; (¥) (see (3.39)).

A given model for the velocity ratle(T') characterizes the unimolecular chemical reaction,
sothis rate characterizes the nonlinear funcfiéf), which ultimately leads to the fine structure
of the hot attracto#,,, (x). In appendix A we have shown thapieecewise lineaapproximation
of the functionf (6) is enough to represent the behaviour of the non-homogeneous stationary
state9, (x). In this appendix we go one step further in the approximation procedure and we
calculate the sgf€,} from the attractor solution of

0= D2y (%) + agu (¥)? — cu ()2 +b xel[-L,L] (D1)

whereg,, (x) fulfils zero-boundary condition oP,, i.e.¢,,(£L) = 0. This attractor can be
Fourier-transformed:

o
bu®H= Y & cos(ﬂ) fel-L, L] (D2)
L
k=0,12,...
Then the set of numbefs,} depends strongly on the valuesaf, ¢, D, andL. For D = 5,
a=5,b=0.1,c=0.1, andL = 1 some of the values of the g} are

E=E6 =439 & =1814 & = —-10.22 & =519
Ey=—-2.76 & =164 & = —1.09 &7 =0.80 etc

so the effectives) can be considered frody up to&s.

Starting from the initial conditiop (¥, 0) = 0, the dynamics toward the attracty; (¥)
represents the stochastic evolution, or éseapeof the amplitudep to the hot attractor of
our thermochemical explosive system. Following remarks 1 and 2 (section 2.1) the approach
toward the attractap,, (%) is triggered by the nois@(,/¢) and this dynamics is characterized
by the FPTDI1 () given in appendix B foP (z,), and section 3.2 (fdr # 0). The Monte Carlo
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simulations have been carried out considering (3.3), which in discrete-time representation are
characterized by the set of equations

o0 2
Ady = [a Z @ubk—n + Do — <l%> D¢ki|At + AW, (D3)
Gt + At) = i (1) + Ay (). (D4)

Here AW, is the random contribution given b&xW; = +/eAtrn;, wheren; are Gaussian
random variables such thaj;) = 0 and(n;n;) = §;; (§;; being the Kronecker delta). These
random variables have been generated using the Box—Mueller algorithm.

As we said before, and in order to study the evolution away from the unstable state, we
choose the initial conditiog, (0) = 0, and we consider the evolution (D4) for?Bourier
modes reaching, if possible, to their respective saturation vafy¢safter which we leave
these modes to keep only the fluctuations of the n@igg/s). All our simulations were
performed using a time increment = 10~% and running 18 Monte Carlo realizations. In
figures 26) and p) we have used the following set of parametefs= 5,a = 5,5 = 0.1,
¢ = 0.1 ande(= 0.00% 0.003). Therefore, the universal parameférand the deterministic
time t are characterized by

K =200 T =222 if ¢=0.001
K =2022 T =222 if &=0.003

In figure 2€) we also show the marginal situatiaoi £ 0) for this case we use= 0.04
which means: /¢ = 1. In this case the s¢£;} has similar values as before, for example:

E=& =4401 &1 =1820 & =-1025 &3 =5.20 etc.
In all the situations our predictions are in good agreement with the simulations.
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